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My research works under the support of the ONR grant can be classified into two major 
areas. One is to develop an adaptive base finite element method for computing multiple scale 
solutions arising from material science and turbulent transport [7,8]. The other is to develop 
stable and efficient numerical methods to compute free surface flows in two and three space 
dimensions [1]. 

1. An adaptive base finite element method for multiple scale solutions 
Many problems of fundamental and practical importance have multiscale solutions. Com- 

posite materials and turbulent transport in high Reynolds number flows are examples of this 
type. Due to the limited computational resources, it is usually impossible to completely 
resolve all small scale components in the solution. On the other hand, From an engineering 
perspective, it is often sufficient to predict the macroscopic properties of these systems, such 
as effective conductivity, elastic moduli, permeability, and eddy diffusivity, and to capture 
the averaged effect of small scales on the large scales. The challenging question is: Can we 
capture the large scale property correctly without completely resolving all the small scale 
components? 

In this work [7,8], we develop a new method of computing multi-scale and multicomponent 
problems in composite materials and turbulent transport problems. The new method is based 
on a general theory of G-convergence of differential operators with multiple scale structure. 
In this method, the base functions arc constructed in such a way that they contain the 
local microscopic properties of the differential operators. Typically the size of the element is 
larger than a certain cut-off scale of the oscillatory coefficient, information at smaller scales 
are built into the base functions. The small scale information in the base functions are 
brought into the large scale (i.e., grid scale or larger) solution through the coupling of the 
global stiffness matrix. Thus, the large scale solution is correctly captured. In this sense, we 
say that the base functions are adaptive to the differential operator. 

In general, the adaptive base functions need to be constructed numerically except for 
certain special cases, such as piecewise constant coefficients or space-separable problems. 
Since the construction is a local operation within the elements, it can be done in perfectly 
parallel. In effect, we break a large scale computation into many smaller and independent 
pieces; this is in contrast to traditional domain decomposition methods, in which the pieces 
are coupled together. Thus, the method is automatically adapted to parallel computers. 
Moreover, once the small scales information within an element (a base function) is gathered 
into the global stiffness matrix, the computer memory used for those base functions can 
be reused for constructing bases of the next element. The ability to gather the fine scale 
information in such a sequential manner leads to drastic saving of computer memory. This 
makes it possible for the method to tackle much larger practical problems than the direct 
numerical methods. Clearly, when the small scale features are localized in a region, we need 
only to construct the adaptive bases in that region. Therefore, the adaptive-base method can 



be used as an alternative to the h-p finite element method or the adaptive mesh refinement 
methods when the averaged effect of the small scales are of the main concern. Another feature 
of our approach is that it can handle general multi-scale problems without the requirement of 
scale separation, a property which is very important for practical applications. Our numerical 
experiments convincingly demonstrate this effect. 

Convergence analysis of our adaptive finite element method is a difficult task. Analysis 
for conventional finite element methods can not be used to analyze our adaptive method. A 
more refined analysis which takes into account the microscale structures of the solution is 
required to reveal the convergence property of our method. In the case of periodic multi-scale 
oscillatory coefficients, we have been able to demonstrate the convergence of our method. Our 
analysis shows that the adaptive method converges independent of the small scale feature of 
the solution [8]. In a subsequent paper, we have carried out a number of careful performance 
studies using massively parallel super computers. Comparison with other existing numerical 
methods is also made. Our study shows that our method is very competitive with other 
numerical methods. Our method can compute multiscale solutions of small scales that are one 
or two orders magnitude smaller than scales that can be computed by conventional methods. 
And the overhead in computing the oscillatory bases function only double the amount of 
works required for a conventional finite element method. To demonstrate the adaptivity 
and the robustness of our method, we have computed random oscillatory coefficient with 
fractal dimensions for practical problems in composite materials and porous media flows. 
Convergence is observed in all our numerical experiments [7]. In the future, we plan to use 
our method to study the effective conductivity of certain composite materials with large 
aspect ratio and many unseparable small scale. We will also study wave propagation in 
random media and the effective diffusivity and possible anomalous diffusion in turbulent 
transport problems. 

2. Efficient and stable numerical methods for free surface flows 
Many physically interesting problems involve propagation of free surfaces. Thin film 

growth for manufacturing materials for electronic devices, solidification problem for crystal 
growth, Hele-Shaw cells for pattern formation are some of the significant examples. These 
problems present a great challenge to physicists and applied mathematicians because the 
underlying problem is very singular. The physical solution is sensitive to small perturbations. 
Straight-forward discretizations may lead to numerical instabilities. Moreover, in many 
situations, the numerical modeling is especially difficult due to the presence of topological 
changes or formation of singularities in the surface. For example, in crystal growth and 
thin film growth, an initial smooth front can develop cusps and crack-like singularities, and 
isolated islands of film material can merge. Another difficulty is due to the presence of 
surface tension in the free surface. It introduces a very stiff term through the local mean 
curvature. In the case of thin film growth, the situation is even worse. The normal velocity 
of the free surface is proportional to the second derivative of the local curvature. This would 
pose an extremely severe stability constraint for time integration if an explicit scheme is 
used. 

In collaboration with Lowengrub and Shelley [2], we introduce a novel idea to remove 
the stiffness of surface tension by reformulating the problem in the tangent angle and the 
arclength metric variables.   Using this reformulation, we can decompose the small scale 



features and integrate the most singular part of the equations implicitly. Our reformulation 
enables us to invert the implicit solution explicitly by FFT, this greatly improves the speed 
of the time integration. For computations of the vortex sheet roll-up in an Euler flow with 
surface tension using a modest number of points (128), the time-step can be chosen 250 times 
larger than for an analogous explicit method. Many problems which were previously un- 
obtainable now become tractable using our techniques and new phenomena were discovered. 
Using our reformulated method, a new type of topological singularity was found numerically 
for fluid interfaces with surface tension, which is different from the curvature singularity due 
to the Kelvin-Helmholtz instability. A careful numerical study has been recently carried 
by us to study the scaling property of this pinching singularity using a high order adaptive 
version of our reformulated boundary integral method [3]. A number of interesting physical 
phenomena are revealed. Numerical study of the two-density unstably stratified flow with 
surface tension has also been carried in a joint work with my student, Hector Ceniceros [4]. 
Our study shows that a similar pinching singularity is also observed in the roll-up of the free 
surface. The type of singularity is qualitatively similar to the ones we observed for the vortex 
sheet with surface tension. Convergence of the reformulated boundary integral method has 
been obtained using delicate energy estimates. 

Another significant result we obtained is to develop and analyze a stable, high order 3-D 
boundary integral method for computing water waves [9,10]. The stability analysis of a 3-D 
boundary integral method is much more difficult and subtle than its 2-D counterpart. For 
a 3-D problem, the singular kernel has an un-removable branch point singularity. Moreover, 
it is much more difficult to obtain the spectral property of the singular integral operators 
with variable coefficients. In our analysis, we develop a framework under which spectral 
properties of various singular operators can be analyzed precisely. We found that the 3-D 
boundary integral method is generically unstable. Using a delicate stability analysis, we 
show how to remove this numerical instability and construct a stable method for computing 
3-D water waves. 

In an effort to compute through topological singularity beyond the pinching of the inter- 
face, we derive a level set formulation for incompressible, immiscible Navier-Stokes equations 
separated by a free surface [5]. This is done in collaboration with Chang, Merriman and 
Osher. The flow we consider has discontinuous density and viscosity. The effect of surface 
tension is also included. Based on this formulation, a second order projection method can be 
used to approximate the evolution equations. This approach can be considered as a method 
of front capturing type since no explicit information about the free surfaces is required in 
the solution procedure. The free surface is recovered at the end of the computation by lo- 
cating the zero level set of a smooth function. This numerical method is efficient and is 
capable of simulating incompressible flow where change of topology in the fluid interface 
occurs, such as merging and reconnection. An area-preserving re-initialization procedure is 
introduced to prevent loss of mass due to numerical diffusion. This property is essential for 
many practical applications. Recently, we (with Osher) have obtained an improved level set 
formulation for vortex sheets with surface tension [6]. In this formulation, the singular delta 
function is factored out from the evolution equation. This gives a more robust formulation 
for both theoretical and computational study. We intend to perform a careful numerical 
study and compare with the result obtained by using our reformulated boundary integral 
method. The advantage of using the level set method is that we can compute beyond the 



pinching singularity without any difficulty. 
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